Lecture 9: Classes, part 1
Morten Rieger Hannemose, Vedrana Andersen Dahl
Fall 2023

ooP
@000

Today's lecture

OOP is a way of structuring programs
An introduction to OOP (15 min) where properties and behavior are

- . . bundled into consisting of
A coding introduction to OOP (45 min) I GnElen eets

The true value of OOP is visible in bigger
projects

ooP
[e] le]e]

Recall things we've seen

f = open(.) # file object
f.write() # file method
f.close()

my_string = # string object
shout = my_string.upper() # string method

my_list = ['C', ,] # list object
my_list.append('B') # list method
my_list.sort() # list method

my_dict = { , b: } #
dictionary object

fruit = my_dict.values() # dictionary method

def my_function(name):
print (£)
something = my_function # function object

More obvious: Lists, strings, dictionaries, file
objects.

Less obvious: Integers, floats, functions.
Under the hood: Everything!

An object is the collection of data and methods that
operate on those data.

Sometimes, you don’t need to think too much
about it.

Sometimes it is important to know that you work
with objects. (Examples from your possible
future: pandas DataFrame, NumPy ND-array,
PyTorch tensor class or nn module.)

Sometimes, it may be useful to define your own
classes.

ooP
[e]e] o]

OOP in Think Python

You can define classes, your own data types, to create objects that represent some
entity (a point, a patient, a customer, a train, an image). Such objects are mutable.

You can write functions that take user-defined objects as parameters, modify objects,
or return them as results.

You can write , blocks of code similar to functions, but associated with a
particular class. A is used when initializing (creating) objects.

You can define operators for your data types, and functions that handle different data
types (polymorphism).

A new class can be a modified version of an existing class (inheritance).

Week 9 covers Chapters 15 and 16, but also and a used for initialization.

OooP
oooe

A note on terminology

OOP is used in many programming languages, and terminology may vary slightly.

In Python, a type and a class is the same.

is a template, prototype, blueprint, mold ... for defining instances.
is a concrete object of a certain class.

Term object and instance are sometimes used interchangeably.

In Python, everything is an object.
If it helps, you can think of the word object as a something.

In conclusion: I'll try saying and to be precise.

Code shown live during lecture

| want to somehow represent the time of day, consisting of
hours and minutes.

representing time using two variables
hours = 13
minutes = 8

print (£)
#representing time using a dictionary
my_time = { 5 A3, : 28}
print (£

)

print (my_time)

To represent time | can use two integer variables, one for
hours, one for minutes. Or, | can use a built-in type, for
example dictionary as shown here.

code
@000

class MyTime:
pass # this is a placeholder for some code

my_time = MyTime() # an instance of the class
my_time.hours = 13
my_time.minutes = 37

print (my_time.hours)
print (my_time.minutes)

other_time = MyTime() # another instance
other_time.hours = 17
other_time.minutes = 00

print (other_time.hours)
print (other_time.minutes)

MyTime is a class, and | create two instances (objects) of this
class: my_time and other_time

We would normally assign attributes (hours and minutes) in
the initialization method, but in this first example, we do it
differently as we don't yet know how self works.

Code shown live during lecture

class MyTime:
pass

my_time = MyTime()
my_time.hours = 13
my_time.minutes = 37

other_time = my_time
other_time.hours = 10

print (my_time.hours)
print (my_time.minutes)
print (other_time.hours)
print(other_time.minutes)

Changing other_time also affects my_time as they point to
the same object.

code
0®00

class MyTime:
pass

my_time = MyTime()
my_time.hours = 13
my_time.minutes = 37

def print_time(time):
print (£)

print_time(my_time)

| can write functions that take user-defined objects as
arguments. Such functions may leave the objects unchanged
(pure functions) or modify objects (modifiers). Here,
print_time is a pure function. An example of a modifier
would be a function incrementing the hours of the time
object it received.

| can also write functions that return user-defined objects.
An example would be a function that asks a user to input
hours and minutes as integers, and then creates a MyTime
instance with those values as attributes.

Code shown live during lecture

class MyTime:

def print_time(self):
print(f)

my_time = MyTime()
my_time.hours = 13
my_time.minutes = 37

my_time.print_time()

Now, print_time is moved inside the class body. This makes
it a of the MyTime class.

The first argument of the method, usually called self, is
always the instance of the class.

The argument self is the object the method works on. The
method is called using a dot notation: object-dot-method.

code
00e0

class MyTime:

def __init__(self, hours, minutes):
self.hours = hours
self.minutes = minutes

def print_time(self):
print (£)

my_time = MyTime(23, 4)
my_time.print_time()

__init__ is a special method that gets called when an
instance of the class is created.

Usually, all instance attributes get assigned in this method.

This is the first example showing the usual way of defining a
class in Python: it would start with the __init__ method.

Code shown live during lecture

class MyTime:

def __init__(self, hours, minutes):

self .hours = hours
self .minutes = minutes

def print_time(self):
print (£

def increment_hours(self):
self.hours += 1
if self.hours == 24:
self.hours = 0

def increment_minutes(self):
self .minutes += 1
if self.minutes == 60:
self .minutes = 0
self.increment_hours()

my_time = MyTime(23, 55)

for i in range(10):
my_time.increment_minutes()
my_time.print_time()

code
oooe

A full example of MyTime class. The example

Keyword class telling Python that what comes in the
indented block is a definition of a class.

__init__ method which gets called (invoked) every time
an instance of the class is created. This happens in line
21 of the code.

print_time method used for printing the state of the
instance, but leaving the instance unchanged.
increment_hours which changes the state of the
instance.

increment_minutes which changes the state of the
instance — notice that it uses increment_hours method.

The example other possibilities (try it
yourself):

A method takes additional input, not only self. For
example, implement a method with increments minutes
for a certain number of minutes.
A method with returns something. For example,
implement a method with returns a string

, where <hh> and <mm> are hours
and minutes.

	OOP
	

	code
	

