
Lecture 13: Summary
Morten Rieger Hannemose, Vedrana Andersen Dahl
Fall 2023

Important announcements

▶ If you have not received a mail from us, you are ok for the exam.

▶ DE test � midterm, but with updated instructions.

▶ Python Installation Support.

▶ Examenscafe, søndag 3/12 9-16.

Exam - sumup

▶ 6th of December, lokale på eksamensplan.dtu.dk

▶ 4 hours (extended time handled by AUS)

▶ No internet.

▶ No Large Language Models (ChatGPT etc.)

▶ Yes to website download, or download of any other text.

▶ Just like midterm.

▶ Hand in: Token �le + python �les

▶ Your grade based only on tests (provided and hidden)

Exam - grading

Remember (added to the �rst-page text)

If you believe there is a mistake or ambiguity in the text, you should use the
most reasonable interpretation of the text to solve the task to the best of
your ability. If we, after the exam, �nd inconsistencies in one or more tasks,
this will be taken into account in the assessment.

But: we will not be �xing your code!

Exam - tips

Format

▶ 10 tasks

▶ All weeks

▶ Equal weight

▶ Unordered

Don't get stuck; move on

Di�culty

▶ Compound interest

▶ Stock Status

▶ First Alarm

▶ Typical Successor

▶ Dice Fairness

Identify easy tasks; skip di�cult ones. When
solving a task, read the entire text �rst.

Hand-in

Yes No

Hand in: token �le and the python �les with your solution, named as downloaded.

Screenshots we show

▶ Inspired by or copied from actual submissions.

▶ Shows common mistakes � you are not alone.

Inputs

You can assume that the input is as described. For example, dice fairness.

dice_fairness.py

You want to check if a set of dice throws is fair. Your task is to write a function
that takes as input a list of numbers from 1 to 6 and returns:

▶ The number that appears most frequently among the throws.

▶ The number of times this most frequent number appears.

▶ The expected number of times for a number to be thrown, calculated by
dividing the number of throws by 6.

You can assume that the input list is not empty and contains only numbers from 1
to 6. If there is a tie for the most frequent number, the function should return the
smaller number.
throws = [4, 2, 4, 4, 5, 6, 1, 2, 3, 4, 2, 3, 5, 5, 4, 4, 3, 2, 1, 4, 6]

Inputs

You can assume that the input is as described. For example, here is a very careful (correct) solution for dice
fairness.

It's ok to say:

 for i in range(1, 7):
 # count all occurrences of i

or

 counts = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0}

or

 counts = [0, 0, 0, 0, 0, 0]
 for t in throws:
 counts[t-1] += 1

Inputs

This works correctly and follows
a valid idea for a solution.
However, with many lines of
code, you might miss spotting
an error.

Special conditions

Be careful about the �rst, last, or anyhow special.

first_alarm.py

The water level of a river is measured (in meters) and recorded every hour. An
alarm is triggered if any of the following two conditions are met:

1. The water level has risen by more than 0.2 meters during the last hour, and
the resulting water level is higher than 1.5 meters.

2. The water level is above 2.0 meters.

Your task is to write a function that returns the index of the �rst alarm. If no
alarm is triggered, the function should return -1. All inequalities are strict for
example, a water level of exactly 2.0 meters is not enough to trigger an alarm.
As an example, consider the input: water_levels = [1.52, 1.29, 1.32, 1.18,

1.45, 1.63, 1.81, 1.95, 2.11, 2.09, 1.98, 1.3]

Special conditions

Mind your bounds!
Bonus question: When is the break reached?

Special conditions

Bonus question: what about an empty list?

Only solution counts

We evaluate your code automatically.

No need for comments or messages.

Now:

▶ Check DE.

▶ Finish all tasks.

▶ Collect your code.

▶ Check your Python installation.

▶ Make no changes before the exam.

▶ (Extra practice: exams from earlier courses.)

Midterm solutions: Compound Interest

 def compound_interest(principal:int, rate:float, frequency:int) -> float:
 """Return the compound interest given principal, rate and frequency.

 :param principal: A positive integer, the principal sum.
 :param rate: A positive float, the interest rate.
 :param frequency: A positive integer, the compounding frequency.
 :return: The compound interest.
 """

 return (principal * (1 + rate / frequency) ** frequency) - principal

Midterm solutions: Stock Status

 def stock_status(number_of_items:int, days_to_delivery:int) -> str:
 """Return stock status message given number of items and days to delivery.

 :param number_of_items: An integer, the number of items in stock.
 :param days_to_delivery: An integer, the number of days to delivery.
 :return: The stock status message.
 """
 if number_of_items<0:
 return('Unknown')

 elif number_of_items>5:
 return('In stock')
 elif number_of_items>0:
 return('Only ' + str(number_of_items) + ' left in stock')
 else:
 if days_to_delivery<0:
 return('Unknown')
 elif days_to_delivery>0:
 return('Available in ' + str(days_to_delivery) + ' days')
 else:
 return('Out of stock')

Midterm solutions: First Alarm

 def first_alarm(water_levels:list) -> int:
 """Return the index of the first alarm given the list of water levels.

 :param water_levels: A list of floats, the water levels.
 :return: The index of the first alarm.
 """
 if water_levels[0] > 2.0:
 return 0
 for i in range(1, len(water_levels)):

 if water_levels[i] > 2.0 or (water_levels[i] > 1.5 and (water_levels[i] -
water_levels[i-1]) > 0.2):

 return i
 return -1

Midterm solutions: Typical Successor

 def typical_successor(text:str, letter:str) -> str:
 """Return the letter that most often follows the given letter in the text.

 :param text: A string, the text.
 :param letter: A string, the letter.
 :return: The letter that most often follows the given letter.
 """

 text = text.lower()
 alphabet = 'abcdefghijklmnopqrstuvwxyz'

 my_dict = {}
 for l in alphabet:
 my_dict[l] = 0

 for i in range(len(text) - 1):
 if text[i] == letter and text[i + 1] in alphabet:
 my_dict[text[i + 1]] += 1

 current_max = 0
 successor = ''

 for key in my_dict:
 if my_dict[key] > current_max:
 current_max = my_dict[key]
 successor = key

 return successor

Midterm solutions: Dice Fariness

 def dice_fairness(throws:list) -> tuple:
 """Return the 3-element tuple containing dice statistics.

 :param throws: A list of integers, the throws of a dice.
 :return: A 3-element tuple containing information about the throws.
 """
 counts = [0, 0, 0, 0, 0, 0]
 for t in throws:
 counts[t - 1] += 1

 how_many = max(counts)
 most_frequent = counts.index(how_many) + 1
 expected = len(throws)/6

 return most_frequent, how_many, expected

