Lecture 12: Algorithms and efficiency
Morten Rieger Hannemose, Vedrana Andersen Dahl
Fall 2023

Course overview

Data types int and float and computation
Functions

Fl | with iti | . ..
ow control with conditions and loops Algorithms and efficiency

Data types str, list, methods, indexing and

/ (writing efficient and readable code)
traversing

Data types dict, tupls Summary and discussion of the exam

(wrapping up, revisiting midterm exam, and

Reading and writing files extras)

Object-oriented programming

Numpy, matplotlib

Code quality
©00000

Software quality: reliability, efficiency, security,

maintainability. In this course: 10-20 lines of code.

In this course, the focus is on: My largest project: a few thousand lines of
Correctness (the only thing we test) code.
Effici . O .
Re:ijlggﬁ?lty Video game: A few million lines of code

Style

Code quality
000000

Code efficiency and style

Counting things
Searching for things
(a bit on) Sorting and merging things

Avoiding unnecessary computation
Carefully choosing variables
(a bit on) Commenting

Common pitfalls

Code quality
00000

Counting and searching

...number 37 ...letter 'F'?
...number larger than 37 ... capital letter?

Is there a ...
Where is thenumber larger than both its predecessor
and successor?
How many ...) .
...an item best according to some measure?
What are . ..

...number with an odd index which is larger
than 37

Remember from the mid-term test exam
First alarm: When did the alarm occur? (Index of the first occurrence of a
number either ...)
Typical successor: What is typically following a letter? (What is .. .)

Dice fairness. What appears most frequently and how many times?

Code quality
00000

Code used for coding examples

text =
too_long = len(text)>10
if too_long: # instead too_long==True

print()
def should_pay_half_price(age): text =
instead if-sentence
return (age < 18) or (age > 65) len_text = len(text)
for p in [10, 50, 90]:
age = 75 print (£

full_price = 100

either full price or half price

instead of if-sentence

price = 0.5 * full_price + 0.5 * full_price
* (18 <= age <= 65)

Code quality
000000

Code used for coding examples

items = [5, 6, 8, 2, 4, 5,7, 8, 4, 6, 4, 3, 5,6, 7, 3, 2,
4, 5,6, 7, 8, 9] # How many occurrences?
counter = 0
Use built-in list methods for item in items:
print(3 in items) if item > 6:
print (items.index(3)) counter += 1
print (items.count(3)) print (counter)
Is there an occurrence? # Looking for the index of somehow best item, with smallest
found_it = False abs(item - 5)
for item in items: # max and min are special cases of this
if item > 6: best_distance = abs(items[0] - 5)
found_it = True best_distance = 1000
break for item in items:
this_distance = abs(item - 5)
Where is the first occurrence? if this_distance < best_distance:
index = -1 # a dedicated value best_distance = this_distance
for i in range(len(items)):
item = items[il] # Larger than both neighbors
if item > 6: for i in range(1, len(items) - 1):
index = i if items[i] > items[i - 1] and items[i] > items[i + 1]:
break print(items[i])
How many occurrences? # 0dd index and larger than 6
counter = 0 for i in range(len(items)):
for item in items: if i 4 2 == 1 and items[i] > 6:
if item > 6: print(items[i])

counter += 1

Code quality
00000e

Code used for coding examples

import numpy as np

numpy_items = np.array(items)

print(3 in numpy_items)

print(numpy_items.index(3)) # This will not work
print (numpy_items == 3)

print ((numpy_items == 3).any())

print(numpy_items.count(3)) # This will not work
print ((numpy_items == 3).sum())

print (np.where (numpy_items == 3))
print (numpy_items[::2])

peak = (numpy_items[1:-1] > numpy_items[2:]) & (
numpy_items[1:-1] > numpy_items[:-2])
print (peak)

print (numpy_items.max())
print (numpy_items.argmax())

items = [5, 6, 8, 2, 4, 5, 7, 8, 4, 6, 4, 3, 5, 6,
7, 3, 2, 4, 5, 6, 7, 8, 9]

print(sorted(items))

print(np.sort(numpy_items))

print (np.unique (numpy_items))

items = [4, 6, 3, 8, 5]
other_items = [5, 8, 11, 13, 9]
for i in other_items:
if i not in items:
items.append (i)
print(items)

	Code quality
	

