
Code quality

Lecture 12: Algorithms and e�ciency
Morten Rieger Hannemose, Vedrana Andersen Dahl
Fall 2023



Code quality

Course overview

▶ Data types int and float and computation

▶ Functions

▶ Flow control with conditions and loops

▶ Data types str, list, methods, indexing and
traversing

▶ Data types dict, tuple

▶ Reading and writing �les

▶ Object-oriented programming

▶ Numpy, matplotlib

Last two weeks of the course (this week and
next week)

▶ Algorithms and e�ciency

(writing e�cient and readable code)

▶ Summary and discussion of the exam

(wrapping up, revisiting midterm exam, and
extras)



Code quality

Code quality

▶ Software quality: reliability, e�ciency, security,
maintainability.

▶ In this course, the focus is on:
▶ Correctness (the only thing we test)
▶ E�ciency
▶ Readability
▶ Style

Code size

▶ In this course: 10-20 lines of code.

▶ My largest project: a few thousand lines of
code.

▶ Video game: A few million lines of code



Code quality

Code e�ciency and style

Examples on

▶ Counting things

▶ Searching for things

▶ (a bit on) Sorting and merging things

Focus on

▶ Avoiding unnecessary computation

▶ Carefully choosing variables

▶ (a bit on) Commenting

▶ Common pitfalls



Code quality

Counting and searching

What is the intended result?

▶ Is there a . . .

▶ Where is the . . .

▶ How many . . .

▶ What are . . .

What is the occurrence I'm searching for?

▶ . . . number 3? . . . letter 'F'?

▶ . . . number larger than 3? . . . capital letter?

▶ . . . number larger than both its predecessor
and successor?

▶ . . . an item best according to some measure?

▶ . . . number with an odd index which is larger
than 3?

Remember from the mid-term test exam

▶ First alarm: When did the alarm occur? (Index of the �rst occurrence of a
number either . . . )

▶ Typical successor: What is typically following a letter? (What is . . . )

▶ Dice fairness. What appears most frequently and how many times?



Code quality

Code used for coding examples

Simplifying code

 text = 'Something'
 too_long = len(text)>10
 if too_long: # instead too_long==True
 print('The text is too long')


 def should_pay_half_price(age):
 # instead if-sentence
 return (age < 18) or (age > 65)


 age = 75
 full_price = 100
 # either full price or half price
 # instead of if-sentence
 price = 0.5 * full_price + 0.5 * full_price

* (18 <= age <= 65)




Avoid unnecessary computation

 text = 'This is a very long text which is
slow to compute the length of.'

 len_text = len(text)
 for p in [10, 50, 90]:
 print(f'{p}% is {p / 100 * len_text}')






Code quality

Code used for coding examples

Searching and counting, lists

 items = [5, 6, 8, 2, 4, 5, 7, 8, 4, 6, 4, 3, 5, 6, 7, 3, 2,
4, 5, 6, 7, 8, 9]



 # Use built-in list methods
 print(3 in items)
 print(items.index(3))
 print(items.count(3))


 # Is there an occurrence?
 found_it = False

 for item in items:
 if item > 6:
 found_it = True
 break


 # Where is the first occurrence?
 index = -1 # a dedicated value
 for i in range(len(items)):
 item = items[i]
 if item > 6:
 index = i
 break


 # How many occurrences?
 counter = 0
 for item in items:
 if item > 6:
 counter += 1


Searching and counting, lists

 # How many occurrences?
 counter = 0
 for item in items:
 if item > 6:
 counter += 1
 print(counter)


 # Looking for the index of somehow best item, with smallest
abs(item - 5)

 # max and min are special cases of this
 best_distance = abs(items[0] - 5)
 best_distance = 1000
 for item in items:
 this_distance = abs(item - 5)
 if this_distance < best_distance:
 best_distance = this_distance


 # Larger than both neighbors
 for i in range(1, len(items) - 1):
 if items[i] > items[i - 1] and items[i] > items[i + 1]:
 print(items[i])


 # Odd index and larger than 6
 for i in range(len(items)):
 if i % 2 == 1 and items[i] > 6:
 print(items[i])




Code quality

Code used for coding examples

Searching and counting, numpy and lists

 import numpy as np


 numpy_items = np.array(items)
 print(3 in numpy_items)
 # print(numpy_items.index(3)) # This will not work
 print(numpy_items == 3)
 print((numpy_items == 3).any())


 # print(numpy_items.count(3)) # This will not work
 print((numpy_items == 3).sum())




 print(np.where(numpy_items == 3))
 print(numpy_items[::2])


 peak = (numpy_items[1:-1] > numpy_items[2:]) & (
numpy_items[1:-1] > numpy_items[:-2])

 print(peak)


 print(numpy_items.max())
 print(numpy_items.argmax())


Sorting and merging

 items = [5, 6, 8, 2, 4, 5, 7, 8, 4, 6, 4, 3, 5, 6,
7, 3, 2, 4, 5, 6, 7, 8, 9]

 print(sorted(items))
 print(np.sort(numpy_items))
 print(np.unique(numpy_items))


 items = [4, 6, 3, 8, 5]
 other_items = [5, 8, 11, 13, 9]
 for i in other_items:
 if i not in items:

 items.append(i)
 print(items)



	Code quality
	


