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Course overview

Data types int and float and computation
Functions

Fl | with iti | . ..
ow control with conditions and loops Algorithms and efficiency

Data types str, list, methods, indexing and

/ (writing efficient and readable code)
traversing

Data types dict, tupls Summary and discussion of the exam

(wrapping up, revisiting midterm exam, and

Reading and writing files extras)

Object-oriented programming

Numpy, matplotlib
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Software quality: reliability, efficiency, security,

maintainability. In this course: 10-20 lines of code.

In this course, the focus is on: My largest project: a few thousand lines of
Correctness (the only thing we test) code.
Effici . O .
Re:ijlggﬁ?lty Video game: A few million lines of code

Style
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Code efficiency and style

Counting things
Searching for things
(a bit on) Sorting and merging things

Avoiding unnecessary computation
Carefully choosing variables
(a bit on) Commenting

Common pitfalls
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Counting and searching

...number 37 ...letter 'F'?
...number larger than 37 ... capital letter?

Is there a ...
Where is the .. . ...number larger than both its predecessor
and successor?
How many ... ) .
...an item best according to some measure?
What are . ..

...number with an odd index which is larger
than 37

Remember from the mid-term test exam
First alarm: When did the alarm occur? (Index of the first occurrence of a
number either ...)
Typical successor: What is typically following a letter? (What is .. .)

Dice fairness. What appears most frequently and how many times?
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Code used for coding examples

text =
too_long = len(text)>10
if too_long: # instead too_long==True

print( )
def should_pay_half_price(age): text =
# instead if-sentence
return (age < 18) or (age > 65) len_text = len(text)
for p in [10, 50, 90]:
age = 75 print (£

full_price = 100

# either full price or half price

# instead of if-sentence

price = 0.5 * full_price + 0.5 * full_price
* (18 <= age <= 65)
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Code used for coding examples

items = [5, 6, 8, 2, 4, 5,7, 8, 4, 6, 4, 3, 5,6, 7, 3, 2,
4, 5,6, 7, 8, 9] # How many occurrences?
counter = 0
# Use built-in list methods for item in items:
print(3 in items) if item > 6:
print (items.index(3)) counter += 1
print (items.count(3)) print (counter)
# Is there an occurrence? # Looking for the index of somehow best item, with smallest
found_it = False abs(item - 5)
for item in items: # max and min are special cases of this
if item > 6: best_distance = abs(items[0] - 5)
found_it = True best_distance = 1000
break for item in items:
this_distance = abs(item - 5)
# Where is the first occurrence? if this_distance < best_distance:
index = -1 # a dedicated value best_distance = this_distance
for i in range(len(items)):
item = items[il] # Larger than both neighbors
if item > 6: for i in range(1, len(items) - 1):
index = i if items[i] > items[i - 1] and items[i] > items[i + 1]:
break print(items[i])
# How many occurrences? # 0dd index and larger than 6
counter = 0 for i in range(len(items)):
for item in items: if i 4 2 == 1 and items[i] > 6:
if item > 6: print(items[i])

counter += 1
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Code used for coding examples

import numpy as np

numpy_items = np.array(items)

print(3 in numpy_items)

# print(numpy_items.index(3)) # This will not work
print (numpy_items == 3)

print ((numpy_items == 3).any())

# print(numpy_items.count(3)) # This will not work
print ((numpy_items == 3).sum())

print (np.where (numpy_items == 3))
print (numpy_items[::2])

peak = (numpy_items[1:-1] > numpy_items[2:]) & (
numpy_items[1:-1] > numpy_items[:-2])
print (peak)

print (numpy_items.max())
print (numpy_items.argmax())

items = [5, 6, 8, 2, 4, 5, 7, 8, 4, 6, 4, 3, 5, 6,
7, 3, 2, 4, 5, 6, 7, 8, 9]

print(sorted(items))

print(np.sort(numpy_items))

print (np.unique (numpy_items))

items = [4, 6, 3, 8, 5]
other_items = [5, 8, 11, 13, 9]
for i in other_items:
if i not in items:
items.append (i)
print(items)



	Code quality
	


