
NumPy Arrays NumPy Operations Exam question

Lecture 11: Introduction to NumPy
Morten Rieger Hannemose, Vedrana Andersen Dahl
Fall 2023



NumPy Arrays NumPy Operations Exam question

Today's lecture

1. Introduction to NumPy (ca. 5 min)

2. NumPy Arrays and Operations (ca. 30 min)

3. Previous exam question (ca. 15 min)



NumPy Arrays NumPy Operations Exam question

Motivation

▶ Lists can contain numbers, and we can
perform any computation on them we desire.
▶ Is this not enough?

▶ For numerical data in arrays, lists are slower
and less practical.

▶ NumPy provides
▶ n-dimensional arrays
▶ tools to work with these arrays.

▶ NumPy allows vectorized operations for
e�cient array calculations.

▶ Operations can be performed element-wise
without explicit looping.

Example: Adding Lists

 list1 = [1, 2, 3]
 list2 = [4, 5, 6]
 result = []
 for i in range(len(list1)):
 result.append(list1[i] + list2[i])

Example: Adding NumPy arrays

 import numpy as np
 arr1 = np.array([1, 2, 3])
 arr2 = np.array([4, 5, 6])
 result = arr1 + arr2



NumPy Arrays NumPy Operations Exam question

Motivation

▶ Lists can contain numbers, and we can
perform any computation on them we desire.
▶ Is this not enough?

▶ For numerical data in arrays, lists are slower
and less practical.

▶ NumPy provides
▶ n-dimensional arrays
▶ tools to work with these arrays.

▶ NumPy allows vectorized operations for
e�cient array calculations.

▶ Operations can be performed element-wise
without explicit looping.

Example: Adding Lists

 list1 = [1, 2, 3]
 list2 = [4, 5, 6]
 result = []
 for i in range(len(list1)):
 result.append(list1[i] + list2[i])

Example: Adding NumPy arrays

 import numpy as np
 arr1 = np.array([1, 2, 3])
 arr2 = np.array([4, 5, 6])
 result = arr1 + arr2



NumPy

import numpy as np

▶ A Widely used package in scienti�c computing, data analysis, and machine learning.

▶ It is the de facto standard for working with numerical data in Python.

▶ Several other libraries are built on top of NumPy, such as Pandas, SciPy, Scikit-learn, and
Scikit-image.

▶ We use arrays to represent matrices and vectors.

▶ Don't call your �les numpy.py



NumPy Arrays NumPy Operations Exam question

NumPy Arrays: Multidimensional Arrays

Working with 2D Arrays

 arr = np.array([1,2,3]) # 1D array
 arr = np.array([[1, 2, 3], [4, 5, 6]]) # 2D array (2x3)
 print("Arr has shape", arr.shape)
 print(arr[0][1]) # looks like list, but inconvenient
 print(arr[0, 1])
 print(arr[:, 1])
 # slicing
 print(arr[:, 1:3])

▶ NumPy supports multidimensional
arrays.

▶ Accessing elements using indices,
similar to lists.

▶ Reshaping:
▶ The method .reshape().
▶ The attribute . The shape is

mutable.



NumPy Arrays NumPy Operations Exam question

Mutability of Arrays and Binary Indexing

▶ In NumPy, arrays are mutable, like lists.

▶ However, changes to a slice directly a�ect the
original array.

Boolean Indexing and Mutability

 import numpy as np
 arr = np.array([1, 2, 3, 4, 5])
 # Create a boolean mask
 mask = arr > 2
 arr[mask] = 10
 print(arr)
 arr2 = arr[mask]
 arr2[-1] = -5
 print(arr)



NumPy Arrays NumPy Operations Exam question

NumPy Arrays: Creation

▶ Lists are designed to be used with .append().

▶ For NumPy we should pre-allocate arrays
▶ Preallocation:

▶ Don't iteratively grow the size of an array.
▶ Create the array with the correct size before a for-loop.

Creating NumPy Arrays

 import numpy as np


 arr = np.array([1, 2, 3, 4, 5]) # array from lists (of lists etc.)
 arr_zeros = np.zeros((3, 4)) # array with only 0
 arr_ones = np.ones((2, 3)) # array with only 1
 arr_range = np.arange(0, 10, 2) # like range



NumPy Arrays NumPy Operations Exam question

NumPy Operations: Universal Functions (ufuncs)

Universal Functions

 arr = np.array([1, 2, 3])


 sqrt_arr = np.sqrt(arr)
 exp_arr = np.exp(arr)
 sin_arr = np.sin(arr)

▶ Universal Functions (ufuncs) apply
element-wise operations.

▶ For example:
▶ np.sqrt()
▶ np.exp()
▶ np.sin()



NumPy Arrays NumPy Operations Exam question

NumPy Operations: Broadcasting

Broadcasting

 arr1 = np.array([[1, 2, 3], [4, 5, 6]])
 arr2 = np.array([10, 20, 30])


 result = arr1 + arr2

▶ Broadcasting enables operations on arrays of
di�erent shapes and sizes.

▶ NumPy handles shape mismatches.
▶ We can add a 1D array to a 2D array.



NumPy Arrays NumPy Operations Exam question

Matrix Operations in NumPy

Matrix Operations

 mat1 = np.array([[1, 2, 3],
 [3, 4, 5],
 [6, 7, 8]])


 vec1 = np.array([5, 3, 2])


 mat1 = np.array([[1, 2, 3],
 [3, 4, 5],
 [6, 7, 8]])


 mat1.dot(vec1) # matrix-vector multiplication
 mat1.dot(mat2) # matrix-matrix multiplication
 mat1.T # matrix transpose

▶ NumPy provides syntax for linear
algebra with matrices.



NumPy Arrays NumPy Operations Exam question

Statistics

Statistics

 data = np.array([1, 2, 3, 4, 5])
 mean_value = data.mean()
 std_dev = data.std()
 median = np.median(data)

▶ NumPy provides functions for statistical
calculations.

▶ axis keyword (e.g., .std(1)).



NumPy Arrays NumPy Operations Exam question

Final notes

▶ Some often used NumPy methods are accessible in multiple ways
▶ x.mean() is the same as np.mean(x)

▶ The method will almost always exist on the np module.

▶ There is a class called numpy.matrix

▶ Don't use it!
▶ From NumPy's documentation:

▶ �It is no longer recommended to use this class, even for linear
algebra. Instead use regular arrays. The class may be removed in
the future.�



NumPy Arrays NumPy Operations Exam question

Coding example
node_divergence.py, exam from June 2021.

Node divergence

A graph can be represented using a 2D array where every
row contains a triplet of numbers (i , j ,wij) representing
one graph edge. Here, i is an index of from-node, j is an
index of to-node, and wij is the weight of the edge from
i to j . For example, consider the graph in the illustration
and its representation using A.

1

2

5

7

8

9

1

1

2

0.5

2.5

1

4

1

4 A =



2 7 1

2 1 1

5 1 2

5 7 0.5
7 2 2.5
7 5 1

7 8 4

9 7 1

8 9 4



A = np.array([[2, 7, 1], [2, 1, 1], [5, 1, 2],

[5, 7, 0.5], [7, 2, 2.5], [7, 5, 1], [7, 8,

4], [9, 7, 1], [8, 9, 4]])

The divergence of node i is de�ned as

di =
∑
j

edgeij

wij −
∑
j

edgeji

wji .

So di is the di�erence between the sum of weights
of all edges originating from i and the sum of
weights of all edges ending in i . For example

d7 = (2.5+ 1+ 4)− (1+ 0.5+ 1) = 5.

Problem de�nition

Create a function node_divergence that takes a 2D
array representing a graph as input. The function
should return an array containing sorted indices for
graph nodes in one column and the divergence
values for the corresponding nodes in the second
column.



NumPy Arrays NumPy Operations Exam question

Node Divergence Solution

 import numpy as np


 def node_divergence(A):
 nodes = np.unique(A[:, :2])
 return_arr = np.zeros((nodes.shape[0], 2))
 return_arr[:, 0] = nodes
 for i in range(nodes.shape[0]):
 node = nodes[i]
 divergence = A[A[:, 0] == node, 2].sum() - A[A[:, 1] == node, 2].sum()
 return_arr[i, 1] = divergence
 return return_arr


	NumPy Arrays
	

	NumPy Operations
	

	Exam question
	


