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Today's lecture

1. Introduction to NumPy (ca. 5 min)

2. NumPy Arrays and Operations (ca. 30 min)

3. Previous exam question (ca. 15 min)
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Motivation

▶ Lists can contain numbers, and we can
perform any computation on them we desire.
▶ Is this not enough?

▶ For numerical data in arrays, lists are slower
and less practical.

▶ NumPy provides
▶ n-dimensional arrays
▶ tools to work with these arrays.

▶ NumPy allows vectorized operations for
e�cient array calculations.

▶ Operations can be performed element-wise
without explicit looping.

Example: Adding Lists

 list1 = [1, 2, 3]
 list2 = [4, 5, 6]
 result = []
 for i in range(len(list1)):
 result.append(list1[i] + list2[i])

Example: Adding NumPy arrays

 import numpy as np
 arr1 = np.array([1, 2, 3])
 arr2 = np.array([4, 5, 6])
 result = arr1 + arr2
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NumPy

import numpy as np

▶ A Widely used package in scienti�c computing, data analysis, and machine learning.

▶ It is the de facto standard for working with numerical data in Python.

▶ Several other libraries are built on top of NumPy, such as Pandas, SciPy, Scikit-learn, and
Scikit-image.

▶ We use arrays to represent matrices and vectors.

▶ Don't call your �les numpy.py
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NumPy Arrays: Multidimensional Arrays

Working with 2D Arrays

 arr = np.array([1,2,3]) # 1D array
 arr = np.array([[1, 2, 3], [4, 5, 6]]) # 2D array (2x3)
 print("Arr has shape", arr.shape)
 print(arr[0][1]) # looks like list, but inconvenient
 print(arr[0, 1])
 print(arr[:, 1])
 # slicing
 print(arr[:, 1:3])

▶ NumPy supports multidimensional
arrays.

▶ Accessing elements using indices,
similar to lists.

▶ Reshaping:
▶ The method .reshape().
▶ The attribute . The shape is

mutable.
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Mutability of Arrays and Binary Indexing

▶ In NumPy, arrays are mutable, like lists.

▶ However, changes to a slice directly a�ect the
original array.

Boolean Indexing and Mutability

 import numpy as np
 arr = np.array([1, 2, 3, 4, 5])
 # Create a boolean mask
 mask = arr > 2
 arr[mask] = 10
 print(arr)
 arr2 = arr[mask]
 arr2[-1] = -5
 print(arr)
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NumPy Arrays: Creation

▶ Lists are designed to be used with .append().

▶ For NumPy we should pre-allocate arrays
▶ Preallocation:

▶ Don't iteratively grow the size of an array.
▶ Create the array with the correct size before a for-loop.

Creating NumPy Arrays

 import numpy as np


 arr = np.array([1, 2, 3, 4, 5]) # array from lists (of lists etc.)
 arr_zeros = np.zeros((3, 4)) # array with only 0
 arr_ones = np.ones((2, 3)) # array with only 1
 arr_range = np.arange(0, 10, 2) # like range
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NumPy Operations: Universal Functions (ufuncs)

Universal Functions

 arr = np.array([1, 2, 3])


 sqrt_arr = np.sqrt(arr)
 exp_arr = np.exp(arr)
 sin_arr = np.sin(arr)

▶ Universal Functions (ufuncs) apply
element-wise operations.

▶ For example:
▶ np.sqrt()
▶ np.exp()
▶ np.sin()
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NumPy Operations: Broadcasting

Broadcasting

 arr1 = np.array([[1, 2, 3], [4, 5, 6]])
 arr2 = np.array([10, 20, 30])


 result = arr1 + arr2

▶ Broadcasting enables operations on arrays of
di�erent shapes and sizes.

▶ NumPy handles shape mismatches.
▶ We can add a 1D array to a 2D array.
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Matrix Operations in NumPy

Matrix Operations

 mat1 = np.array([[1, 2, 3],
 [3, 4, 5],
 [6, 7, 8]])


 vec1 = np.array([5, 3, 2])


 mat1 = np.array([[1, 2, 3],
 [3, 4, 5],
 [6, 7, 8]])


 mat1.dot(vec1) # matrix-vector multiplication
 mat1.dot(mat2) # matrix-matrix multiplication
 mat1.T # matrix transpose

▶ NumPy provides syntax for linear
algebra with matrices.
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Statistics

Statistics

 data = np.array([1, 2, 3, 4, 5])
 mean_value = data.mean()
 std_dev = data.std()
 median = np.median(data)

▶ NumPy provides functions for statistical
calculations.

▶ axis keyword (e.g., .std(1)).



NumPy Arrays NumPy Operations Exam question

Final notes

▶ Some often used NumPy methods are accessible in multiple ways
▶ x.mean() is the same as np.mean(x)

▶ The method will almost always exist on the np module.

▶ There is a class called numpy.matrix

▶ Don't use it!
▶ From NumPy's documentation:

▶ �It is no longer recommended to use this class, even for linear
algebra. Instead use regular arrays. The class may be removed in
the future.�
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Coding example
node_divergence.py, exam from June 2021.

Node divergence

A graph can be represented using a 2D array where every
row contains a triplet of numbers (i , j ,wij) representing
one graph edge. Here, i is an index of from-node, j is an
index of to-node, and wij is the weight of the edge from
i to j . For example, consider the graph in the illustration
and its representation using A.
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A = np.array([[2, 7, 1], [2, 1, 1], [5, 1, 2],

[5, 7, 0.5], [7, 2, 2.5], [7, 5, 1], [7, 8,

4], [9, 7, 1], [8, 9, 4]])

The divergence of node i is de�ned as

di =
∑
j

edgeij

wij −
∑
j

edgeji

wji .

So di is the di�erence between the sum of weights
of all edges originating from i and the sum of
weights of all edges ending in i . For example

d7 = (2.5+ 1+ 4)− (1+ 0.5+ 1) = 5.

Problem de�nition

Create a function node_divergence that takes a 2D
array representing a graph as input. The function
should return an array containing sorted indices for
graph nodes in one column and the divergence
values for the corresponding nodes in the second
column.
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Node Divergence Solution

 import numpy as np


 def node_divergence(A):
 nodes = np.unique(A[:, :2])
 return_arr = np.zeros((nodes.shape[0], 2))
 return_arr[:, 0] = nodes
 for i in range(nodes.shape[0]):
 node = nodes[i]
 divergence = A[A[:, 0] == node, 2].sum() - A[A[:, 1] == node, 2].sum()
 return_arr[i, 1] = divergence
 return return_arr
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